m-polynomial and degree-based topological indices

Authors

s. klavžar

e. deutsch

abstract

let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the $m$-polynomial. the new approach is also illustrated with examples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

full text

M-Polynomial and Degree-Based Topological Indices

Let G be a graph and let mij(G), i, j ≥ 1, be the number of edges uv of G such that {dv(G), du(G)} = {i, j}. TheM -polynomial ofG is introduced withM(G;x, y) = ∑ i≤j mij(G)x y . It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the M -polyn...

full text

M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes

Mobeen Munir 1, Waqas Nazeer 1, Shazia Rafique 2 and Shin Min Kang 3,4,* 1 Division of Science and Technology, University of Education, Lahore 54000, Pakistan; [email protected] (M.M.); [email protected] (W.N.) 2 Center for Excellence in Molecular Biology, Punjab University Lahore, Lahore 53700, Pakistan; [email protected] 3 Department of Mathematics and Research Institute of Natural ...

full text

On ev-degree and ve-degree topological indices

Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...

full text

M-Polynomial and Related Topological Indices of Nanostar Dendrimers

Dendrimers are highly branched organic macromolecules with successive layers of branch units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as it produces many degree-based topological indices. These indices are invariants of the topology of graphs associated with molecular structure of nanomaterials to correlate certain physicochemical properties like bo...

full text

Extremal problems for degree-based topological indices

For a graph G, let σ(G) = ∑ uv∈E(G) 1 √ dG(u)+dG(v) ; this defines the sum-connectivity index σ(G). More generally, given a positive function t, the edge-weight t-index t(G) is given by t(G) = ∑ uv∈E(G) t(ω(uv)), where ω(uv) = dG(u) + dG(v). We consider extremal problems for the t-index over various families of graphs. The sum-connectivity index satisfies the conditions imposed on t in each ext...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of mathematical chemistry

Publisher: university of kashan

ISSN 2228-6489

volume 6

issue 2 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023